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Abstract
Obesity is a global epidemic affecting over 1.5 billion people and is one of the risk factors for

several diseases such as type 2 diabetes mellitus and hypertension. We have constructed

a comprehensive map of the molecules reported to be implicated in obesity. A deep curation

strategy was complemented by a novel semi-automated text mining system in order to

screen 1,000 full-length research articles and over 90,000 abstracts that are relevant to obe-

sity. We obtain a scale free network of 804 nodes and 971 edges, composed of 510 pro-

teins, 115 genes, 62 complexes, 23 RNA molecules, 83 simple molecules, 3 phenotype and

3 drugs in “bow-tie” architecture. We classify this network into 5 modules and identify new

links between the recently discovered fat mass and obesity associated FTO gene with well

studied examples such as insulin and leptin. We further built an automated docking pipeline

to dock orlistat as well as other drugs against the 24,000 proteins in the human structural

proteome to explain the therapeutics and side effects at a network level. Based upon our

experiments, we propose that therapeutic effect comes through the binding of one drug with

several molecules in target network, and the binding propensity is both statistically signifi-

cant and different in comparison with any other part of human structural proteome.

Introduction
Obesity, a complex condition with serious medical, psychological and social consequences,
affects millions of people across the world [1]. In addition, rising numbers of juvenile onset
obesity cases contribute to increased incidence of time-dependent complications of obesity
such as insulin resistance, non-insulin-dependent diabetes mellitus, hypertension, coronary
artery disease and other cardiac disorders often grouped as "metabolic syndrome X" [2–3]. The
pathophysiology of obesity is influenced by several factors such as candidate genes and their
expression, single nucleotide polymorphisms, proteins, metabolic pathways and their perturba-
tions due to mutations, nutrition, exercise, gut microbes, and diseases, e.g. hypothyroidism [4–
5]. Experts recommend that increase in physical activity and reduction in intake of high calorie
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foods, can act as possible deterrent to obesity epidemic. Numerous studies have examined the
use of medicines [6–7] and surgery [8] as possible treatment measures, although clinical studies
also indicate that recurrences are high in people who have lost weight through diet, exercise or
medication [9].

Adipose tissue is central to the regulation of energy balance. In the pathophysiology of obe-
sity, chronic adipose tissue inflammation is a hallmark [10]. Two functionally different types of
fats are present in mammals: white and brown adipose tissue. White adipose tissue is the pri-
mary site of triglyceride storage whereas brown adipose tissue is implicated in energy expendi-
ture. The latter has an ability to counteract obesity [11]. Adipogenesis, namely the formation of
adipose tissue begins with the commitment of mesenchymal stem cells (MSCs) to the adipocyte
lineage, followed by terminal differentiation of preadipocytes to mature adipocytes [12]. The
adipose tissue storage is influenced by environmental and genetic factors. The environmental
influence generally depends on the individual’s life-style, for instance, food intake and physical
activity. The importance of genetic factors in obesity has been demonstrated by twin studies,
adoption studies and segregation analyses [13–14].

The literature data pertaining to obesity is vast and complex. For instance, ‘obesity’ as a key-
word in PubMed yielded over 13,000 results (hits) for a single year 2011. It was increased by
11,612 hits in 2012 and 11,177 hits in 2013, showing that literature data is growing at rapid
pace. In addition to proteins and other molecules, these abstracts contain reports from clinical,
genetic, mutational and meta-studies. To construct comprehensive molecular map of mole-
cules reported in obesity, we used information from full length articles using deep curation
model [15]. A deep curation model performs better than text mining methods, particularly in
terms of accuracy, but has the disadvantage of being labour intensive and time consuming [16].
Given this constraint, it is difficult to curate large number of papers published every year and
such a resource will become obsolete in absence of regular revision and updates by experts.
Therefore, we decided to develop a hybrid system combining text mining systems and deep
curation strategy to screen large amount of published data available on obesity to provide up-
to-date information.

Networks pervade our lives as exemplified by worldwide webs, internet, small world net-
works, electricity grids, social networks, topology of food webs, citation networks as well as
metabolic networks. To understand the role of networks in complex diseases, there were several
attempts to construct disease networks [17–19]. A research group built a pathway on an auto-
immune disease, “Rheumatoid arthritis” using microarray data [20]. In biological systems, at
molecular or cellular levels, several reconstructions of comprehensive pathways have been con-
ducted using published literature data. These include compiling human cell-cycle events by
Kohn [21], comprehensive maps of EGFR pathway [22], Toll-like receptor signalling pathway
[23] and RB/E2F pathway [24]. Apart from these, researchers have also used microarray data
[25], protein-protein interaction data [26–27], co-cited data [28] as well as literature data [29]
to construct networks. Despite all these efforts, there is plenty of scope to expand the role of
networks in disease pathophysiology.

Human Obesity Gene Map 2005 is considered to be one of the best information resource for
genes implicated in obesity [30]. The Human Obesity Gene Map 2005 provides evidence from
single-gene mutation obesity cases, Mendelian disorders exhibiting obesity as a clinical feature,
transgenic and knockout murine models relevant to obesity, quantitative trait loci (QTL) from
animal cross-breeding experiments, association studies with candidate genes, and linkages
from genome scans and genes or markers that have been shown to be associated or linked with
obesity phenotype. We identified 379 genes reported in obesity from Human Obesity Gene
Map and included in our proposed network. Transcription factors play an important role
in conversion of pre-adipocytes to adipocytes and involved in several other mechanisms
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pertaining to obesity pathophysiology. For this reason, we retrieved 114 transcription factors
from DGAP (Diabetes Genome Anatomy Project) & GenMapp (http://www.genmapp.org/
default.html). Apart from these, we identified an independent set of 33 genes reported in obe-
sity literature (See Table A in S2 File for list of molecules & Table B in S2 File for experimental
evidence). This work was complemented by mining over 35,000 genes in 96,219 abstracts using
perl scripts. Through text-mining, we found 4,274 genes as first round of ‘hits’ (See Methods).
Since text mining systems are known to produce large number of false hits, therefore we
screened these hits manually and removed gene names matching with common English words,
abbreviations and methodology terms using various types of filters (See examples provided on
our website http://tinyurl.com/d74r9xy as well as in S3 File). Out of 4,274 hits, we label 1,268
genes as positive hits and 3,006 as false positive hits (See Table C in S2 File). Text mining sys-
tem also reported several recently published molecules such as fat mass and obesity associated
(FTO) and omega-3 fatty acid receptor 1 (GPR120) [31–32].

Based upon these techniques, we constructed two datasets (A and B) to create comprehen-
sive network. Set A consist of 473 genes and proteins retrieved through deep curation strategy
whereas set B consist of 1268 genes retrieved through semi-automatic text mining system. We
started with this set of molecules as a 'partial list' of the proposed comprehensive network and
expanded by adding more molecules based upon interactions reported in literature in context
of obesity. The final comprehensive map was constructed based upon genes, proteins, recep-
tors, transcription factors, enzymes, ion channels, drugs, RNA molecules, simple molecules
and their relationships (See Fig 1).

Results

General features of the map
We screened over one thousand research articles manually and more than 96,219 abstracts
(published till December 2012) using text mining system. The majority of molecules identified
in this study can be tracked to sources such as human obesity gene map database update 2005,
GenMapp and miscellaneous literature reports (Table A in S2 File). We have prepared a
resource base where each molecule is linked with its research article. Each paper is curated
manually and the portion of text denoting gene (molecule) or its interaction with other mole-
cules in context of obesity is highlighted. The information on interactions of molecule is given
on our website (Supplementary Folder 1: Gene interaction evidence: “http://tinyurl.com/
nc3yjj7” & A in S3 File & Table D in S2 File). During this study, we encountered set of mole-
cules which are found to be involved in syndromes where obesity is one of the clinical out-
comes. Since the direct evidence on the role of these molecules in obesity is not known, we
decided to include them as an independent part of the proposed map. We label this set as ‘lesser
studied (reported) group’ due to paucity of literature data. To illustrate, ALMS1 gene is related
with an “Alstrom syndrome 1” where obesity is a frequent clinical outcome in patients [33],
but, direct evidence of linking ALMS1 with obesity is not reported in literature. Similarly,
Gamma-aminobutyric acid A receptor gamma 3 (GABRG3) is an early childhood obesity gene
reported in Prader-Willi syndrome [34], but, direct experimental evidence is not known. Like-
wise, genes reported from X-linked mutation studies and linkage studies could not be placed in
the main network due to sparse experimental or interaction data. Therefore, out of 473 mole-
cules, we included 389 molecules in the proposed network and the rest 84 molecules were
reported as an independent set (See Table E in S2 File). The process, of incorporation of lesser
studied molecules in proposed network, is elaborated in the following sections.

In Fig 2, we show comprehensive map of molecules that was manually assembled based on the
published literature. Various entities of the network, e.g. genes, proteins and their modifications,
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Fig 1. Flowchart for generation of comprehensive map.

doi:10.1371/journal.pone.0146759.g001
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protein complexes are described using standard Systems Biology Markup Language (SBML) with
the help of Cell Designer 4.1 software[35] and Systems Biology Graphical Notation (SBGN)[36]
(www.sbgn.org). The nodes (also known as species) represent molecules that participate in a
given reaction. The edges represent reactions among nodes. The resulting network on obesity
consists of 804 nodes (includes set A molecules as well as other genes/molecules interacting with
set A) and 971 edges. These 804 nodes are categorized as 510 proteins, 115 genes, 1 ion, 3 drugs, 3
degraded molecules, 62 complexes, 23 RNAmolecules, 83 simple molecules, 3 phenotypes and 1
unknownmolecule (See Table F in S2 File). The reactions are categorised as follows: 848 state
transitions, 33 transcriptions, 18 translations, 5 transports, 62 heterodimer association and 5 dis-
sociations (Table F in S2 File). Supporting information for each interaction in the comprehensive
map is documented separately in Table G in S2 File.

Linking lesser-studied/reported molecules with comprehensive map
There are several clinical conditions as well as syndromes, where obesity is one of the reported
phenotype apart from other clinical features characteristic of that syndrome. These include
Prader-Willi syndrome, Ulnar-mammary syndrome and Biemond 2 syndrome (See Table E in
S2 File). Prader-Willi syndrome is characterised by hyperphagia, characteristic facial features,
hypogonadism and short stature. This syndrome is caused by loss of genes imprinted on
15q11-q13 region such as gamma-aminobutyric acid (GABA) A receptor, gamma 3
(GABRG3), imprinted in Prader-Willi syndrome (IPW), small nucleolar RNA, C/D box 116
cluster (PWCR1), small nuclear ribonucleoprotein polypeptide N (SNRPN) and MAGE-like 2
(MAGEL2). We retrieved information for these genes from literature databases as well as from
relevant pathways such as KEGG [37] and REACTOME [38]. Then, we aimed to find any

Fig 2. A comprehensive map of obesity in human. (Also see URL:http://tinyurl.com/dykn8fd).

doi:10.1371/journal.pone.0146759.g002
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evidence of relationship between less-studied genes with obesity network molecules. After
extensive manual screening, we were able to find one study[39] which links the GABRG3 with
methyl CpG binding protein 2 (MECP2) gene. The MECP2 gene is a part of module 1 of com-
prehensive network (See Fig 3). Encouraged by this result, we screened over 6000 abstracts rep-
resenting 84 lesser-studied genes using our text-mining approach. These includes molecules
such as, CYP11B2 (cytochrome P450, family 11, subfamily B, polypeptide 2), PLSCR1 (phos-
pholipid scramblase 1), PTPNS1 (signal-regulatory protein alpha gene interactions), ALMS1
(alstrom syndrome 1), UBR1 (ubiquitin protein ligase E3 component n-recognin 1) and
GABRG3 (gamma-aminobutyric acid A receptor, gamma 3). These efforts led to identification
of several abstracts/studies through which we could link highly connected nodes with lesser-
studied genes with the help of intermediary molecules. For example, we could identify that
CYP11B2 (molecule belonging to lesser studied group) expression and secretion is inhibited
by peroxisome proliferator activator receptor gamma (PPAR γ), a key molecule in adipocyte
lineage [40] and a reported hub of our map. Additional details are given at our website http://
tinyurl.com/knnqsmm. We also computed composite score of lesser studied (reported) genes
and compared with hubs (well studied genes) (See File I in S1 File).

Structure of the map
We used standard techniques to find structure in the constructed map [41]. The map has
bow-tie architecture and resembles to alphabetical character "I". To facilitate map exploration,
we divided our map into three regions: top, intervening (or central) and bottom. The promi-
nent class of molecules present in the top region include neurotransmitters (catecholamine,
dopamine, &serotonin), lipoproteins [lipoprotein lipase (LPL) & high density lipoprotein
(HDL)], receptors [peroxisome proliferator-activated receptors delta δ (PPAR δ)], and cyto-
kines [interleukin 6 (IL6)]. This indicates involvement of wide variety of molecules in obesity
pathophysiology. The central part includes extensively reported molecules (leptin, ghrelin &
insulin) along with less frequently reported molecules such as forkhead box A2 (FOXA2/
HNF3B), pancreatic and duodenal homeobox 1(PDX1) and lep-ob-Rb (leptin-leptin receptor)
complex (See Table 1). The bottom region majorly consists of transcription factors and signal-
ing molecules, inclusive of glucose transporter 4 (GLUT4), adiponectin (ADIPOQ), lipin1
(LPIN1), fatty acid binding protein 4 (FABP4), necdin, BMP delta-like 1 homolog (DLK1/
PREF1), tumour necrosis factor alpha (TNF α) and PR domain containing 16 (PRDM16). In
addition, several feedback loops connect top and bottom regions (highlighted in dark green
colour in Fig 4).

Representation of the map
Genes and proteins are represented by standard notations, whereas interactions are categorized
as positive, negative, neutral and catalysis. A positive regulation is defined for set of molecules,
in which the molecule’s activity is stimulated by another molecule. In this context, authors fre-
quently uses specific verbs such as stimulate, activate, induce, enhance, up-regulate and
increase. Negative regulation is the inhibition of the neighbouring interacting molecule which
is evident by verbs like inhibit, down-regulate, decrease, prevent, suppress and reduce. The
edge representations include transcription, translation, association and dissociation using stan-
dard graphical notation. Apart from these, there are some reactions where a molecule regulates
the reaction between other molecules, i.e. catalysis (See Table 2). The colour scheme and graph-
ical representation is explained at website (http://tinyurl.com/dykn8fd) and File J in S1 File.
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Module generation—Reverse Engineering of the pathway
To understand a large network, a logical step is to divide the network into biologically mean-
ingful smaller functional components [42]. This process is often termed as reverse engineering
and several approaches have been described to identify modules. These range from spectral
methods [43–44], methods that identify maximum flows or minimum cuts [45–46], heat ker-
nels [47], betweeness centrality [48], seed node searches [49] e.g. MCODE in cytoscape [50],
brute force methods [51] and weighted kernel k-means [52]. Community structures ormodules
are defined when a larger density of links exists within a specific part of the network than out-
side it [53]. We used different methods to identify community structures (modules) in obesity
network. In addition, we clustered genes based upon tissue specific expression data. Since each
method produces different results with some degree of overlap, we decided to integrate infor-
mation to identify functionally meaningful modules (See File A in S1 File). Hence, the con-
structed network was divided into 5 modules based upon physiological processes and likely
anatomical component (Table 3). In the following section, we attempt to relate modules with
disease conditions (Fig 5).

Module 1: This module consists of highly connected nodes involved in neuro-hormonal sig-
naling affecting energy homeostasis, hunger and mood. They include leptin, ghrelin and dopa-
mine. Leptin is one of the highly studied molecules in obesity after insulin (present in7.4% of
total abstracts). Leptin acts as a satiety factor and its discovery has paved the way for the study
of adipocyte derived factor in energy balance homeostasis. Further, the secretion of the leptin is
directly proportional to amount of fat cells [54]. Recently, leptin replacement therapy has been
proposed to treat obese individuals[55]. Frequent association of obesity with clinical depression
can be explained by the impaired leptin activity in brain [56].

Ghrelin act as an endogenous ligand for growth hormone secretagogue receptor (GHSR). It
has been reported to be involved in energy regulation and appetite signaling through activation
of peptides, including AgRP, NPY and POMC [57]. Rise and fall in plasma ghrelin levels before
and after food intake supports the hypothesis that ghrelin plays a physiological role in meal ini-
tiation in humans [58]. Ghrelin levels are altered in individuals suffering from Prader-Willi
and Cushing's syndrome [59]. A meta-analysis linked gastrointestinal hormones, ghrelin and
obestatin levels with obesity [60].

Fig 3. (A) Linking lesser studied (reported) genes (CYP11B2, UBR1, MECP2 and PTPNS1) with molecules of comprehensive map. (B) Examples of lesser
studied gene interactions (CYP11B2, PLSCR1, PTPNS1, ALMS1, UBR1 and GABGR3).

doi:10.1371/journal.pone.0146759.g003
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The importance of dopamine signaling in obesity has been demonstrated by the alteration
of dopamine receptor levels with changes in body mass index (BMI) [61]. Apart from these,
several other molecules have been reported in context of obesity; therefore, we have described
their roles at our website: http://tinyurl.com/kazahj6.

Module 2:Obesity is a major risk factor for non-insulin dependent diabetes mellitus
(NIDDM) [62]. Insulin is a central molecule in pathophysiology of type 2 diabetes and also

Table 1. Shows three components of the map: top, bottom and central component along with the molecules and their connectivity degree.

I SHAPE STRUCTURE

CENTRAL COMPONENT BOTTOM PART

NODES CONNECTIVITY DEGREE NODES CONNECTIVITY DEGREE

LEP 31 C/EBP ALPHA 24

OB-Rb-LEP 8 C/EBP BETA 18

OB-Rb 2 C/EBP DELTA 14

TYROSINE HYDROXYLASE 5 PREF1 11

GHRELIN-GHSR 8 NECDIN 7

AGRP 8 BMP7 9

POMC 7 BMP2 7

NPY 7 BMP4 7

ALPHA-MSH 6 LPIN1 8

PDX1 8 AGPAT2 5

HNF3B 7 BSCL2 4

FOXO1 7 SREBP1C 6

AKT 6 FABP4 12

SREBP1 6 GLUT4 18

PI3K 5 PPAR GAMMA 41

INSULIN 32 MIR103 6

IRS1 5 PPAR GAMMA 2 6

P38 11 PRDM16 7

TOP PART ASP 5

DOPAMINE 9 TNF ALPHA 18

CATECHOLAMINES 8 PAI1 12

NOR-EPINEPHRINE 6 PGC 1 ALPHA 12

TRYPTOPHAN 3 ERR GAMMA 7

SEROTONIN 6 PPAR ALPHA 9

CCK-CCKAR 3 ADIPOQ 8

EPINEPHRINE 3 NRF2 3

DRAJC3 3 ERR ALPHA 7

ALPHA ADENYL CYCLASE 4 NRIP1 5

SCD 9 TCF 12

MLXIPL 4 CTNNB1 12

LPL 13 TCF4 4

HDL 4 AMPK 8

FXR ALPHA 5

CHOLESTROL 7

IL6 11

CHOLESTROL ESTER 7

PPAR DELTA 6

doi:10.1371/journal.pone.0146759.t001
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appears in large number of abstracts related to obesity (23,165 abstracts; 24% of total dataset)
in humans. Module 2 primarily encapsulate insulin and its interactions with other molecules,
for instance, apolipoprotein A-V (APOA5), forkhead box C2 (FOXC2), macrophage migration
inhibitory factor (MIF), uncoupling protein (UCP) and v-akt murine thymoma viral oncogene
homolog 2 (AKT2). This module builds a link between tightly coupled clinical conditions- obe-
sity and type 2 diabetes.

Module 3: Lipid storage and metabolism is affected frequently in obese patients leading to
dyslipidemia, exposing them to cardiovascular risks [63] and atherosclerosis [64]. The third
module maps interactions, catalysis and processing of molecules involved in lipid metabolism,
including acetyl CoA, aspartate, mevalonate, cholesterol, cholic acid, and diacylglycerol.

Module 4: It is the largest module in the network and majorly consists of transcription fac-
tors involved in adipose tissue differentiation and other biological activities in humans. The
interactions are dominated by molecules like peroxisome proliferator-activated receptors-
PPAR (α, β, γ) and CCAAT/enhancer-binding proteins-C/EBP (α, β, γ). The molecules such as
PPAR γ (with 41 edges) provide indirect connections with lesser studied genes/molecules
reported in context of obesity. This module is divided into another sub-module labelled as
“4A” to incorporate set of molecules distinct from transcription factors.

Module 4A: Though theWnt pathway has been shown to play a major role in embryogenesis
and some of the cancers, it has also emerged as an important regulator of adipocyte differentia-
tion [65]. In addition, recent evidence of obesity treatment using traditional herbal medicine,

Fig 4. I-shape structure of the network consisting of central component connected with top and bottom regions. The feed-back loops are highlighted
in dark green colour.

doi:10.1371/journal.pone.0146759.g004
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Table 2. Shows types of interaction, example of verbs, representative sentences and references.

Types of interaction
with verbs

Sentences References

Positive

Activate Leptin in central nervous system exhibit their action by binding to ob-Rb, a long isoform of leptin
receptor. The binding leads to the activation of four tyrosine residues by phosphorylation and
a Box 1 region in ob-Rb.

Frühbeck,2006

Positive The STAT3 exhibits a positive regulation on POMC [pro-opio melanocortin], which are the major
molecules in energy regulation

Frühbeck, 2006

Induce C/EBP β and C/EBP δ induces kruppel-like transcription factor [KLF] 5. A. Schäffler et al, 2006

Stimulate E2F1 stimulate PPAR γ during early stages and E2F4 inhibit it in later stages. Fajas, L. et al, 2002

Up-regulate In adipocytes, SORBS1 is upregulated by thiazolidinedione [TZD] through PPAR γ and also
interact with insulin receptor.

Wen-Hsing Lin et al, 2001

Increase PRDM16, which leads to increase in expression of UCP1, PGC α and PGC β during mature
adipocyte development

Yu-Hua Tseng et al, 2008

Enhance Urocortin enhances Leptin-Induced Stat1 Activation, Mediated by Either CRHR1 or CRHR2. Weihong Pan et al,2007

Require We report that exercise and recombinant IL-6 requires IL-10 expression to suppress hyperphagia-
related obesity.

Eduardo R. Ropelle et al,
2010

Bind Follistatin binds to myostatin but also binds to and inhibits other members of the TGF-beta
superfamily, notably activins.

Nakatani M et al, 2008

Trigger AMPK activated through leptin and external stimuli, triggers myocytes enhancing factor 2 [MEF2]
[A & D] which leads to the expression of GLUT4.

Farid F. Chehab, 2008

Negative

Inhibit PPAR γ inhibit the expression of aromatase by CYP19A1 gene. Reposo Ramirez-Lorca
et al, 2007

Negative LXR [liver X receptor], a transcription factor take part in adipogenesis by negatively regulating
PGC-1, glucose-6 phosphatase, phosphoenol pyruvate carboxykinase [PEPCK/PCK2].

Bryan A. Laffitte et al,
2003

Prevent PON3 in plasma individually prevents artherosclerosis by inhibiting phospholipid stimulation of
monocyte chemotactic protein [MCP]

Diana M. Shih et al, 2007

Decrease PPAR δ decreases LDL and triglycerides. Markku Va¨nttinen et al,
2005

Reduce In the presence of ID3, the binding of E47 and SREBP1 is reduced, thereby transcriptional
activity of ADIPOQ is controlled.

Curt D. Sigmund et al,
2008

Suppress In conclusion, disruption of neuromedin B receptor did not interfere with the sensitivity of thyroid
hormone-mediated suppression of TSH release, but impaired the ability of thyrotroph to
increase serum TSH in hypothyroidism, which highlights the importance of NB in modulating
the set point of the hypothalamus–pituitary–thyroid axis at hypothyroidism.

Karen J Oliveira
et al,2008

Down-regulate We demonstrate that activation of LXR in the liver leads to the induction of glucokinase
expression and to the down-regulation of peroxisome proliferator-activated receptor γ
coactivator-1α [PGC-1] and genes involved in gluconeogenesis.

Bryan A. Laffitte et al,
2003

Neutral

Regulate The cyclic AMP responsive element–binding protein-1 [Creb1]-regulated transcription
coactivator-1 [Crtc1] is required for energy regulation

Judith Y Altarejos et al,
2008.

Correlate In girls, visfatin correlated with leptin, r = 0.40, P = 0.009, and thiols, r = -0.36, P = 0.009, which
explained 24% in visfatin variability.

Krzystek-korpacka M
et al, 2011

Elicit At basal glucose, GIP does not elicit insulin release. Pfeiffer AF et al, 2010

Influence An exciting new report describes that leptin can influence insulin release by osteoclastin, a
hormone produced by osteoblasts.

Rashmi C and Rodger AL,
2011

Associate Leptin was associated with insulin, insulin resistance, and body composition parameters, body
mass index, basal metabolic rate, body weight, %fat, and fat mass, in participants, with or
without T2DM in both genders.

Gulturk S et al, 2008

Affect In conclusion, HSL affects insulin secretary capacity especially in the setting of obesity. Sekiya M et al, 2009

Contribute FOXO1 may contribute to enhanced ADIPOR1, but not ADIPOR2 transcription in IR. Felder TK et al, 2010

(Continued)
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SH21B, has indicated about anti-adipogenic mechanism mediated by Wnt-β catenin signaling
[66].

Module 5: The last module contains information about disjoint set of genes/proteins
involved in obesity which are difficult to categorize due to inadequate information.

Quantitative Analysis
To understand the properties of constructed network, we computed several topological param-
eters as described below (See File B in S1 File for detailed information).

1. Degree distribution parameter: We found that the several number of connections follow
power laws that indicates scale-free pattern of connectivity (γin: in-degree parameter as 2.19
and γout: out-degree parameter as 2.11). The scale free behaviour is also observed in constit-
uent modules suggesting preferential attachments and hubs in the network (See Table 4).

Table 2. (Continued)

Types of interaction
with verbs

Sentences References

Catalysis

Catalysis Tyrosine hydroxylase [TH] catalysis the conversion of L-tyrosine to DOPA which in-turn is
regulated by SPOCK1, fgf14 [fibroblast growth factor-14], Cxcl14, BMP6 [bone morphogenetic
protein 6]

C. Vadasza, 2007

doi:10.1371/journal.pone.0146759.t002

Table 3. Describes information of five modules obtained from the network. The columns show pre-dominant hub, likely anatomical component and
physiological process with the connectivity degree of major molecules.

Modules Pre-dominant
Molecule

Likely
Anatomical
Component

Physiological Process Major Molecules with their degree of connectivity

Module 1 Leptin Central Nervous
System

Satiety, Appetite, Energy expenditure Leptin [LEP]– 14, Dopamine– 9, Catecholamine– 8,Ghrelin—
Growth Hormone Segretagogue Receptor[GH-GHSR]-5, Agouti-
related Protein [AGRP]– 8, Pro-opiomelanocortin [POMC]– 6,
NeuroPeptide Y [NPY]– 7,Tyrosine Hydroxylase—4, Adregenic
Receptor Alpha 1B [ADRA1B]-3

Module 2 Insulin Pancreas Glucose metabolism Insulin [INS]– 21,Forkhead box A2 [HNF3B]– 6,Pancreatic and
Duodenal Homeobox 1 [PDX1]– 7,Forkhead box O1[FOXO1]–
6,Interleukin 6 [IL6]– 5
Leptin [LEP]– 5,Insulin receptor substrate 1 [IRS1]– 6, Insulin
receptor substrate 2[IRS2]– 5,Insulin receptor– 5

Module 3 High Density
lipoprotein

Liver & Gastro-
Intestinal Tract

Fatty acid regulation and metabolism, Base-line
glucose control.

Lipoprotein Lipase[LPL]– 6,High Density Lipoprotein– 12,Low
Density Lipoprotein– 6,FXR alpha– 5,Cholesterol– 6

Module 4 PPAR gamma Adipose Tissue Store fat derived from the diet and liver
metabolism or degrades stored fat to supply fatty
acids and glycerol to the circulation.

Peroxisome proliferator-activated receptor
PPAR alpha– 9,PPAR gamma– 41, PPAR beta– 3,PPAR gamma
2–6,
PGC1alpha -12
CCAAT/enhancer binding protein
C/EBP alpha– 24,C/EBP beta—18
C/EBP delta– 14,Glucose Transporter 4–9,Tumor Necrosis Factor
Alpha-18,
Adiponectin [ADIPOQ]– 8,PR domain containing 16–7,PREF1–11,
Necdin– 7
Lipin1- 8,Sterol regulatory element binding transcription factor 1
SREBP1c- 6

Module
4a

CTNNB1 Adipose Tissue Inhibitor of Adipogenesis Catenin [cadherin-associated protein], beta 1 CTNNB1–12
HNF1 homeobox A [TCF]– 9

Module 5 Distinct
SetsSignalling

- - - - - - - - - - - - - - - - - - - - - - - -

doi:10.1371/journal.pone.0146759.t003
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2. Clustering Coefficient:Our network and its constituent modules show clustering coefficient
values and average clustering coefficient [67] close to 0 suggesting tree-like structure [68].

3. Average shortest path length value was found to be 15.85 for comprehensive network sup-
porting scale free nature of the graph [69].

Randomization of Constructed Network
We constructed null models (control) and compared the properties of comprehensive network
with null models [68, 70]. The protocol is described as following: In a true network gene A (lep-
tin) binds with gene B (leptin receptor) to perform a function X (i.e. leptin act as satiety factor
and exhibits its action by binding to leptin receptor) in cell.

Null model 1- In this model, we randomised the edges but kept the node labels and their
degrees intact. For example, the connection (edge) between gene A (leptin) and gene B (leptin
receptor) is deleted. A new connection is established between gene A and gene C (any other
gene of the network except leptin receptor) so as to disrupt the function X.

Null Model 2- We shuffle the positions of nodes by keeping the global degree distribution of
the comprehensive map intact.

Null Model 3- This is generated by shuffling both the position of nodes as well as their edges
(See File C in S1 File).

Null Model 4- We construct the network with same number of edges and nodes using meth-
ods proposed by Erdos-Renyi [71], Watts-Strogatz [72] and Barabasi-Albert [73]. To see the

Fig 5. Modules of the comprehensive map.

doi:10.1371/journal.pone.0146759.g005
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effect of properties on size of the network, we construct networks with node numbers from 100
to 1000. Firstly, we use method proposed by Erdos-Renyi to construct a random graph of N
nodes connected with n edges, which are chosen randomly from N (N-1)/2 possible edges and
are not scale-free [71]. Secondly, a control network was generated through Watts-Strogatz
model (1998) [72], where in random graph is produced with small-world properties, including
short average path length and high clustering. Thirdly, in Barabasi-Albert model [73], the gen-
eration of random graph is based on the connected seed network of s nodes. Remaining nodes
(n-s) are added one at a time, and connected to existing nodes (m) randomly. The resulting
network is found to follow power-law degree distribution.

In addition, we generated randomized networks using random network module of cytos-
cape. The obesity network (true network) exhibit different properties when compared to 18
control randomized networks obtained by shuffling the obesity network associations while
keeping the degree distribution of nodes fixed (Fig G and Fig H in S1 File). We find that clus-
tering coefficient increases from 0 (in true network) to 0.00201 (randomized network with
30000 shuffling. See Fig G in S1 File). This pattern is reversed in case of mean shortest path,
which reduced from 18 to 11 units (See Fig H in S1 File). We have also enclosed additional
information for results generated during shuffling procedure in the Table H in S2 File and web-
site in S3 File.

Robustness of Network
To see the robustness of network and its dependence on failure of a particular node, we ran-
domly deleted nodes and computed properties for the remaining network. There are several
indexes of network centrality such as degree, eccentricity, closeness, betweenness, stress, cen-
troid and radiality which allow quantifying the topological relevance of single nodes in a

Table 4. Topological analysis of the comprehensive map using Network analyzer and Gephi.

S.No. Parameters Network Analyzer Gephi

1 Nodes 1799 1799

2 Degree Distribution

In-degree

γ 2.193 -

R2 0.866 -

Out-degree

γ 2.116 -

R2 0.914 -

3 Clustering Co-efficient 0 -

4 Connected Components

Weakly Connected 35 35

Strongly Connected - 1398

5 Diameter 46 46

6 Average Shortest Path-length 15.86 15.86

7 Average number of neighbours 2.37

8 Network Density 0.0 0.001

9 Average Degree - 1.192

10 Average Weighed Degree - 1.6

11 Modularity - 0.875

12 No. of Clusters - 62

doi:10.1371/journal.pone.0146759.t004
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network. Recently introduced parameters such as node interference and robustness were also
included in the analysis. These parameters measure the relative importance of given node in
context of network [74]. It was also shown in the past that the hubs (nodes with high degrees)
play important roles in maintaining structural integrity of networks against failures and
attacks, [75] in spreading phenomenon [76] and in synchronisation [77]. Since, obesity net-
work shows scale free structure with presence of hubs, we started our deletion experiments by
sequential deletion of hub nodes to see the effect on network robustness. This was achieved by
removing a node and calculating the interference on the centrality of the remaining nodes
using centiscape plugin of cytoscape. We find that removal of hubs alone or in combination
impact the network tremendously. We find that various critical properties of network changes
to significant extent. For example, betweenness of nodes of original network (Mean = 10738.4;
Var. = 3.3E8) were significantly different when compared with networks obtained after deleting
all hubs (Mean = 13675.4; Var. = 1.1E9) computed through paired t test (P<0.05). When we
randomly deleted any node (not hub), the changes were not significant in the parameters (See
Table I in S2 File and Folder: Deletion experiment on website (A) in S3 File).

Gene Ontology Analysis (GOA)
To understand the biological processes present in large dataset of obesity genes, we used
BiNGO [78] and Network Ontology Analysis (NOA) [79]. We observed that adipocyte specific
functions, including response to nutrient level were represented by 48 molecules (10% of total
dataset, p value: 2.49e-25), regulation of lipid metabolic process was seen with respect to 47
molecules (9.9% of total dataset, p value: 2.44e-37), carbohydrate metabolic process (38 mole-
cules; 8%, p value: 9.5e-07), lipid localization (36 molecules; 7.6%, p value: 3.75e-22), lipid bio-
synthetic process (35 molecules; 7.3%, p value: 5.42e-10), feeding behaviour (31 molecules;
6.5%, p value:8.0e-30), and response to nutrient by 31 molecules (6.5%, p value: 2.49e-25). In
biological process, the sub-category- cellular process comprises 80.9% of the genes of our data-
set, which include cell communication (83 molecules; 22.6% of total dataset, p value: 1.06e-22),
regulation of gene expression (152 molecules; 41.5%, p value: 4.43e-12) and regulation of pro-
grammed cell death (72 molecules; 19.6%, p value: 6.89e-15). Similarly in molecular function,
92.9% genes are involved in binding activity and in cellular process/location- 69.5% of the
genes are found to be present in intracellular section of cell which primarily includes nucleus
(165 molecules; 59.1% of total dataset, p value: 1.03e-02) and endoplasmic reticulum (50 mole-
cules; 17.9%, p value: 4.33e-05) (See Table J in S2 File).

Mapping of Microarray Data
The microarray data was obtained from Gene Expression Atlas [80] using search term “obesity
and homo sapiens” from the URL (http://www-test.ebi.ac.uk/gxa/). The gene list was obtained
for three possible conditions: up-regulation, down regulation and non-differentially expressed.
We selected 3,485genes reported to be up-regulated in obesity and labelled them as set ‘U’. Sub-
sequently, we found 2,135 genes (labelled as D) as down-regulated group and a very large num-
ber of genes (2,91,407) as non-differentially expressed (NDE). After removal of redundancy,
we obtained 1,340 molecules as up-regulated (U), 918 molecules as down-regulated (D), and
38,434 molecules as non-differentially expressed (NDE) molecules as a filtered sets.

Thereafter, we compared filtered dataset obtained from microarray database with our list.
Based upon comparisons, we found that 27 genes (obtained from deep curation approach
(DC)) are up-regulated in obesity whereas 24 genes show down-regulation and large numbers
of genes did not show any change in expression or information is not available in the database.
Using gene ontology analysis, it was revealed that most of the up-regulated genes are involved
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in protein binding and down-regulated group are involved in steroid binding activity (See File
D in S1 File).

Since, we could not map large number of genes; we attempted to find expression data of
obesity genes in GEO (http://www.ncbi.nlm.nih.gov/geoprofiles) microarray database. We
found that 34.5% of genes (obtained from text mining (TM) approach) are up regulated
whereas 27.58% are down regulated.

Applications of Obesity Network-Implications in therapeutics
We used orlistat (tetrahydrolipstatine, an FDA approved drug for treatment of obesity) to dock
against the molecules listed in our network using our in-house docking pipeline “Docoviz”. We
observe that orlistat not only binds to fatty acid synthase (FASN) (ΔE = -13.7 Kcal/mol; experi-
mentally known target) but also binds to several other molecules in the obesity network. To
check whether orlistat produces its clinical effect (of weight reduction) possibly due to prefer-
ential binding to several molecules listed in the obesity network (N) than any other part of pro-
teome, we created a dataset of 24,000 known human protein structures (P) and docked orlistat
against them. In addition, we created datasets of randomly selected protein structures from P
labelled as P1, P2. . .Pn as controls. We also used Alzheimer disease network molecules [81] as
an additional control (D). We observed that the distribution of binding energies obtained from
controls (P1, P2, P3. . .Pn) and Alzheimer disease network(D) is significantly different from
test dataset(N) (P value<0.05, Welch T test).

In another experiment, we docked drugs (which do not have effect on obesity) against the
obesity network proteins. For instance, we used Acetylsalicylic acid (selected randomly; anti-
inflammatory medicine) to dock against the obesity network proteins. Apart from that, we
used drugs, showing comparable tanimoto co-efficient to orlistat, such as 3-Carboxy-N,N,
N-Trimethyl-2-(Octanoyloxy) Propan-1-Aminium (Tc Value: 0.68) and 6-Deoxyerythronoli-
deB (Tc Value: 0.6) to ascertain binding energy profiles in the obesity network. We detected
that the binding energy profiles of the above mentioned drugs against the obesity network pro-
teins are different from that of orlistat (P value<0.05, Student’s T test).

Orlistat is known to produce several side-effects namely acne, respiratory tract infection,
urinary tract infection and nausea, possibly due to binding to off targets perturbing unrelated
pathway. Using text mining systems and manual screening, we obtained list of molecules impli-
cated in the side effects/diseases related to orlistat. On comparison, we found that several mole-
cules are common in obesity network and acne (14 molecules; 2.7% of total dataset), providing
a possible clue for causation of acne in patients taking orlistat during obesity treatment. Like-
wise, sibutramine (antidepressant and anorexigenic drug) was withdrawn due to adverse effects
such as agitation, fever, vomiting, diarrhoea, loss of coordination, and dilated pupils. Using our
map, we could link the side effects of sibutramine with disease networks. To illustrate, symp-
toms such as nausea, vomiting and depression are likely to be produced due to binding of sibu-
tramine to targets such as SLC6A3 and SLC6A4 and subsequent perturbation of pathway
involving HTR2C (anxiety), HTR2A (anxiety), DRD2 (nausea and vomiting), COMT (nausea
and vomiting), and MAOA (depression) (File E in S1 File).

Discussion
This work shows a new approach of combining data from heterogeneous databases including
literature, structure and microarrays to construct disease networks and attempt to explain ther-
apeutics of a drug molecule in context of networks. Our methods are generic, web enabled and
open in nature to build rich networks. Each entity i.e. node or edge has been hyper-linked to its
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source (research papers) so as to maintain transparency in the system for users to evaluate and
improve the system in a collaborative fashion.

Network targeting involves activity of a compound across multiple pathways which might
be necessary to effectively stop neoplasm and pathogens, but can also produce side effects
by targeting undesirable proteins [82]. Very few large scale docking studies have been con-
ducted in the past (Gao et al. used ~1,100 targets [83]; Hui-fang et al., used 1,714 targets
[84]; [85]). Here, we performed docking of orlistat with obesity network proteins as well as
with whole human proteome (>24000 proteins) as a test example. Based upon our predic-
tions, we propose that a given drug (orlistat) not only bind to its known target (FASN;
ΔE = −13.6 Kcal/mol) but also to several other targets in the network with varying degree of
binding energies. This propensity of binding of drug within the target network (obesity) is
different from binding with any other disease network or network randomly drawn from
human proteome. Further, we also observe that the therapeutically unrelated drugs for a
given clinical condition (“Acetylsalicylic acid in obesity”) show different binding patterns to
network proteins. These results contribute to emerging concepts of network pharmacology
[82] and chemigenomics [86] to develop safer, cheaper and effective medicines. The possible
limitation of this approach is non-specific or random binding of ligand to many of the pro-
tein targets.

Real world networks including biological networks are characterised by presence of few
highly connected nodes known as hubs and they tend to show non-Poisson degree distribu-
tion. Evidence shows that hub proteins are encoded by essential genes [87] that seem to be
older, evolve slowly and their deletion affect a large number of nodes as compared to non-hub
nodes [88–90]. Therefore, different studies have attempted to associate hub proteins to disease
genes. Some studies support this hypothesis, whereas few studies contradict this hypothesis
[90–92]. Our network shows hub based architecture with select set of nodes occupying most
of the connections- leptin, insulin and PPAR gamma. Most of these genes likely to be essential
in nature, whereas some of the recently reported candidate genes are present in periphery in
our map, e.g. fat mass and obesity associated (FTO) gene. It may be inferred that the obesity
pathophysiology is primarily influenced by interactions of essential genes, therefore obesity
could be considered as a system level adaptation toward chronic nutritional over intake and
other causative factors.

We compared our network with previously published dataset, including Kitano et al, 2004
[41], Logsdon et al, 2012 [93] and found several of our network molecules present in these
datasets (See File F in S1 File). Various population wide studies have indicated that hyperten-
sion is a predominant clinical condition affecting over 40% of obese people (BMI> 30) [94],
whereas type II diabetes mellitus affects 40–60% of obese people [95]. Using text mining
approaches, we found that there is a significant overlap between molecules implicated in obe-
sity and its associated disorders such as diabetes or hypertension. This overlap is less when
molecules implicated in obesity are compared to molecules implicated in unrelated disease
group e.g. asthma, urticaria and ataxia.

Considering wide variety of factors affecting the obesity pathophysiology, we believe that
obesity comprehensive map will act as a platform to integrate information derived from gene
expression experiments, protein-protein interaction data, drug information, clinical data,
metagenomic and pharmacogenomic information. It will be interesting to understand how
this network evolves temporally in a lifespan of a given individual(s) from lean state to obese
state. What modules or links get formed or abolished during the process? It can also act as a
system where new drugs may be tested against disease networks to predict their therapeutics
or side-effects.

Obesity Network

PLOS ONE | DOI:10.1371/journal.pone.0146759 February 17, 2016 16 / 25



Material and Methods

(A) Retrieval of Literature Data
We screened each research article manually and highlighted text for the name of molecules as
well as their interactions. We also used information provided in human obesity gene map data-
base 2005 update [30] and GenMapp (http://www.genmapp.org/default.html). The abstracts
having the term “obesity” and “human” were downloaded from PubMed using RefNavigator
(version 2.0). We obtained 96,219 abstracts on obesity in human till December 2012 (See
Folder 2 available at website (A) in S3 File). We used perl scripts to parse additional informa-
tion which includes authors’ names, affiliations, journal name & year of publication. Each
abstract was processed and unique id was assigned using perl scripts.

(B) Determining True Positives and False Positives
Researchers have used several approaches to link genes with complex traits such as obesity. Pri-
marily, linkage analysis and association studies have been used to find the variants that affect
obesity. In addition, animal models also provide list of candidates genes through linkage stud-
ies, expression profiling, and transgenic strains. The techniques such as expression analysis and
protein interaction studies also identify candidate genes for obesity. Given the wide variety of
available experimental techniques, we grouped these studies (evidences) into various categories
and provided a numerical code to each of them (See Table B in S2 File). Next, we label each
gene with a numeric code for better data management.

A gene is defined as true positive example, when we have enough evidence to link a gene
with a disease. For example, Leptin (Lep) deficiency is linked with intractable form of obesity
(Uniprot Id—P41159; OMIM ID- 614962). As a rule of thumb, we labelled genes with high
confidence when many independent research studies published in high impact journals with
sufficient citations support that link. Since, each gene has different types of experimental evi-
dences ranging from mutation studies, animal studies, genome wide association linkage studies
and clinical studies. We grouped these evidences into various categories and provided a numer-
ical code (See Table B in S2 File). The false positives are those gene examples which matched
common English words used in sentences, abbreviations of organizations, and author names.
They also include examples which occurred in abstracts but rejected during manual screening
due to lack of clear evidence.

(C) Hybrid approach
Deep-curation approach (DC) is defined as screening of literature data by experts whereas
text-mining systems (TM) sift through publication data for the occurrence of the genes and
their interactions using computational software and predictive algorithms at large scale.
Though, text mining systems are fast, but they suffer from several problems limiting their use.
For example, consider a representative statement from a research article [54], “the binding of
the SH2 domain of SH2B1 to phospho-Tyr, 813, in JAK2 enhanced leptin induction of JAK2
activity”. Here, different text mining tools will report—“Jak2 enhanced leptin”. This is consid-
ered to be a positive interaction but the real meaning is leptin increases JAK2 activity upon
binding of SH2 domain to JAK2. Due to these constraints, text mining systems are not consid-
ered robust enough to resolve numerous problems warranting the need for deep-curation
approach. Our TM approach is formulated as following-:

(i). LetW be the set of all the genes and their synonyms in human that may occur at least
once in the set of abstracts labelled as A. TheW is represented as a matrix where each
row represents a gene (wi) and its synonyms. The synonyms and approved symbols for
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each gene are shown in tab separated format in a text file where notation “wij” is desig-
nated for them.

(ii). A separate matrix (M) is constituted for storing frequencies of genes, listed inW. It con-
tains genes (wi) in the first column and their respective counts (ck) in second column.
For example, w2 represents the gene LEP, having a gene count (c2) of 7,159 in the
PubMed abstracts (1960–2012 December).

(iii). We also define N asthe gene co-occurrence matrix. Each entity of this matrix is described
as Nxyz to store information extracted from research articles. This is composed of three
units: Nx, Ny and Nz. Nx capture first instance of gene encountered in the sentence
whereas Nz keeps the next instance of gene and Ny stores intermediate set of words. To
illustrate, consider a statement, “Insulin is known to increase expression of the ob gene
product leptin in adipose tissue”. Here, insulin and leptin are labeled as gene pair having
10 intermediate words between them. Therefore, “insulin” will be Nx; “leptin” will be Nz

and “is known to increase expression of the ob gene product” is Ny.

MatrixN ¼

Gene1 InterveningWords Gene3

N1 N2 N3

N3 N5 N1

N4 N6 N1

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

We extract gene pairs from the abstracts and full length articles and compute their frequen-
cies. We also build frequency distribution of intermediate words (Ny) useful for building dictio-
nary for subsequent natural language processing. This dataset is also useful for training of
machine learning systems such as hidden markov models and support vector machines (manu-
script in preparation) as well as manual curation.

(iv). Parser is a set of dictionaries that are built for various types of interactions, tenses and
negations. We curated data of 300 research articles to identify the most frequently used
words to represent interactions namely, positive, negative and neutral. We use these dic-
tionaries to label interactions by building a matrix O. In matrix O, Oxyz represent the data
structure where the gene Ox (insulin) is followed by gene Oz (leptin) with their type of
interaction, Oy (positive). This is processed for graphical-view using GraphViz (Version
2.28). The detailed example (tutorial) of TM approach is provided in a S7 in S1 File.

Text-Mining Approach Algorithm
Let abstracts = A;
Let genes = W; // 35,000 Genes in human & its synonym
Let gene count matrix = M;
Let co-occurrence matrix = N;
Let NLP matrix = O;

for i = 1 to n do // ‘i’ is a row representing a gene in W
for j = 1 to n do // ‘j’ is a column representing a gene name, symbol in W

Let ck = 0; // Initializing the count of a gene ‘i’ in abstracts A as 0
if i,j � A then

write i to M; // write the gene ‘i’ in gene count matrix M
ck = ck +1;

append ck to M; // The gene ‘i’ is appended with its count ck in M
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next; // Search for the next gene
read gene x � M; //Reading the gene x from gene count matrix M

read gene z � W; //Reading the gene z from the dictionary W
gene-pair Nx,z;

for x = 1 to n do // x represents the first gene of a gene-pair in M
for z = 1 to n do // z represents the second gene of a gene-pair in W

Let Nx,z = 0; // Initializing the count of gene-pair x, z as 0
Let y = 0; // y is words between gene-pair initialized as 0
for gene x � A do

for gene z � A do
if x then z then
read y in A

if length y > 3;
write x,y,z to N; // Nx,y,z is a co-occurrence matrix
Nx,z = Nx,z + 1; // Total occurrence of a gene pair
append Nx,z to N

next; // Search for the next gene-pair
Let NLP Parser = P; //Set of Dictionaries P

Let Interaction verb dictionary = Pa; //Sub-dictionary in P
Let tenses = Pb; //Sub-dictionary in P
Let negations = Pc; //Sub-dictionary in P

for Pa � N // Search for interaction verb in N
for Pb � N // Search for tenses in N

for Pc � N // Search for negations in N
write O; // O is a NLP matrix

(D) Comprehensive Map Construction
The comprehensive map of molecules in obesity was constructed using Cell Designer software
[35]. Cell Designer support systems biology graphical notation (SBGN) and provides various
functions to the users to represent molecular entities, including gene, protein, and RNA as well
as edge notations-transcription, translation, inhibition and stimulation. The activity as well as
modulation in the molecule can also be represented. The constructed map can be exported as
systems biology mark-up language (SBML) format, preferred for computational models of bio-
logical processes.

(E) Module Generation
Reverse engineering of the comprehensive map was conducted using tools and methods men-
tioned in A File in S1 File.

(E) RandomModel Generation
Random models of the comprehensive map were generated by two approaches: Firstly, by
Degree Preserving Random Shuffle using Network Analyzer Tool [96] and secondly, by apply-
ing Scale-free random graph (a cytoscape plug-in Random Networks). We also used perl
scripts developed in-house for randomisation process.

(F) Comprehensive Map Analysis

1. The topological analysis was performed through graph based algorithms such as NetworkA-
nalyzer [97] and Gephi (https://gephi.org/).
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2. The gene ontology (GO) analysis was carried out for three categories: molecular function,
biological process and cellular component using BiNGO [78] and Network Ontology Analy-
sis (NOA) [79].

3. The identification of protein targets of drugs, particularly orlistat, was accomplished with
Docoviz pipeline (Fig 6). Docoviz is an automated system used for docking of drugs against
protein structures at large scale using Auto-dock Vina [98]. This system is based upon perl
and other languages such as ruby (manuscript in preparation). We obtained structural
information of the genes implicated in obesity from protein data bank (PDB). Orlistat as
well as other drugs were obtained from Drugbank [99] and their side effects were retrieved

Fig 6. Shows the (A) schematic diagram of Docoviz pipeline and its (B) applications.

doi:10.1371/journal.pone.0146759.g006
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from SIDER database. The pdb format of protein structure was converted to pdbqt format
before commencing the docking procedure. We identified active site coordinates through
geometric search method. A grid of about 20Å around the active site coordinates was gener-
ated to search all possible transition point (See K File in S1 File).

Supporting Information
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(DOC)

S2 File. Tables A through J are present in this document.
(XLS)

S3 File. It contains information on websites containing additional supplementary data.
(DOCX)
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